Loading…

Adenovirus Enhancement of Transferrin-Polylysine-Mediated Gene Delivery

Gene transfer may be accomplished by the receptor-mediated endocytosis pathway using transferrin-polylysine conjugates. For some target cells, however, gene transfer by this vector is extremely limited, despite the presence of the appropriate surface receptors, a phenomenon attributed to lysosomal d...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1991-10, Vol.88 (19), p.8850-8854
Main Authors: Curiel, David T., Agarwal, Santosh, Wagner, Ernst, Cotten, Matt
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gene transfer may be accomplished by the receptor-mediated endocytosis pathway using transferrin-polylysine conjugates. For some target cells, however, gene transfer by this vector is extremely limited, despite the presence of the appropriate surface receptors, a phenomenon attributed to lysosomal degradation of endosome-internalized conjugate-DNA complexes. To enhance DNA escape from the cell vesicle system and thus augment gene transfer by this route, we have used the capacity of adenoviruses to disrupt endosomes as part of their entry mechanism. Adenoviral infection augmented levels of gene transfer by transferrin-polylysine conjugates in a dose-dependent manner: levels of gene transfer of >2000-fold above baseline were achieved. Use of the adenovirus in this context allowed enhanced levels of gene transfer in a variety of target cells, including cell lines otherwise refractory to gene transfer by transferrin-polylysine conjugates. This augmentation was based on adenoviral-mediated vesicle disruption, a process independent of viral gene expression. Thus, the development of specific mechanisms to effect release from the endosome in combination with gene transfer by the receptor-mediated endocytosis pathway will increase the utility of this delivery system by allowing high levels of gene expression in target cells.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.19.8850