Loading…

Deglucosylation of N-Linked Glycans is an Important Step in the Dissociation of Calreticulin-Class I-TAP Complexes

Recent evidence indicates that newly synthesized major histocompatibility complex (MHC) class I proteins interact with calnexin, a transmembrane endoplasmic reticulum protein specific for certain glycoproteins bearing monoglucosylated glycans. Here, we studied the association of newly synthesized cl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13997-14001
Main Authors: Jeroen E. M. Van Leeuwen, Kearse, Kelly P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent evidence indicates that newly synthesized major histocompatibility complex (MHC) class I proteins interact with calnexin, a transmembrane endoplasmic reticulum protein specific for certain glycoproteins bearing monoglucosylated glycans. Here, we studied the association of newly synthesized class I proteins with calreticulin, a soluble calnexin-related ER protein, in murine T cells. We found that, unlike calnexin-class I interactions, calreticulin assembly with class I proteins was markedly decreased in the absence of β2microglobulin expression and that calreticulin associated with a subset of class I glycoforms distinct from those assembled with calnexin but similar to those bound to TAP (transporter associated with antigen processing) proteins. Finally, these studies show that deglucosylation of N-linked glycans is important for dissociation of class I proteins from both calreticulin and TAP and that the vast majority of newly synthesized class I proteins associated with calreticulin are simultaneously assembled with TAP. The data demonstrate that calnexin and calreticulin chaperones assemble with distinct MHC class I assembly intermediates in the ER and show that glycan processing is functionally coupled to release of MHC class I proteins from peptide transport molecules.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.93.24.13997