Transforming Spatial Point Processes into Poisson Processes Using Random Superposition

Most finite spatial point process models specified by a density are locally stable, implying that the Papangelou intensity is bounded by some integrable function β defined on the space for the points of the process. It is possible to superpose a locally stable spatial point process X with a compleme...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability 2012-03, Vol.44 (1), p.42-62
Main Authors: Møller, Jesper, Berthelsen, Kasper K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most finite spatial point process models specified by a density are locally stable, implying that the Papangelou intensity is bounded by some integrable function β defined on the space for the points of the process. It is possible to superpose a locally stable spatial point process X with a complementary spatial point process Y to obtain a Poisson process X ⋃ Y with intensity function β. Underlying this is a bivariate spatial birth-death process (X t , Y t ) which converges towards the distribution of (X, Y). We study the joint distribution of X and Y, and their marginal and conditional distributions. In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well-known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking in the case of a Strauss process.
ISSN:0001-8678
1475-6064
DOI:10.1239/aap/1331216644