Loading…
Stationarity and Ergodicity for an Affine Two-Factor Model
We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1,...
Saved in:
Published in: | Advances in applied probability 2014-09, Vol.46 (3), p.878-898 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1239/aap/1409319564 |