Loading…

Stationarity and Ergodicity for an Affine Two-Factor Model

We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1,...

Full description

Saved in:
Bibliographic Details
Published in:Advances in applied probability 2014-09, Vol.46 (3), p.878-898
Main Authors: Barczy, Mátyás, Döring, Leif, Li, Zenghu, Pap, Gyula
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3
cites cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3
container_end_page 898
container_issue 3
container_start_page 878
container_title Advances in applied probability
container_volume 46
creator Barczy, Mátyás
Döring, Leif
Li, Zenghu
Pap, Gyula
description We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.
doi_str_mv 10.1239/aap/1409319564
format article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1409319564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1409319564</cupid><jstor_id>43563380</jstor_id><sourcerecordid>43563380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</originalsourceid><addsrcrecordid>eNptkc1LxDAQxYMouK5evQkFL16qk4-mrSdl8QtWPLh7LmkylZRusyZdxP_eLLusop6GeXn5zeSFkFMKl5Tx8kqp5RUVUHJaZlLskREVeZZKkGKfjACApoXMi0NyFEIbW54XMCLXr4MarOuVt8NnonqT3Pk3Z6xet43zUUpum8b2mMw-XHqv9BDFZ2ewOyYHjeoCnmzrmMzv72aTx3T68vA0uZ2mWkgY0pzVSmuWIRpjWMmYbDTkWsusyVUusOAoWFlQLbAWUqFBVcqSUcAC6ozXfExuNtyldy3qAVe6s6ZaertQ_rNyylaT-XSrbkvMovrOIiIudoj3FYahWtigsetUj24VKioZQEkZ8Gg9_2Vt3cr38YEVzWKYeYyNRtflxqW9C8Fjs1uHQrX-jb8bnG0utCEGuHMLnknOC4jnsAWqRe2tecMfc_9HfgH3I5Vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560677801</pqid></control><display><type>article</type><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</creator><creatorcontrib>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</creatorcontrib><description>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1409319564</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>37A25 ; 60J25 ; Affine process ; Differential equations ; Ergodic processes ; Ergodic theory ; ergodicity ; Foster-Lyapunov criteria ; General Applied Probability ; Geometry ; Lebesgue measures ; Markov processes ; Martingales ; Mathematical analysis ; Mathematical models ; Mathematical moments ; Mathematics ; Probability ; Probability distribution ; Semigroups ; stationary distribution ; Studies ; Symbols ; Two dimensional ; Two dimensional modeling</subject><ispartof>Advances in applied probability, 2014-09, Vol.46 (3), p.878-898</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © Applied Probability Trust 2014</rights><rights>Copyright Applied Probability Trust Sep 2014</rights><rights>Copyright 2014 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</citedby><cites>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43563380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43563380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Barczy, Mátyás</creatorcontrib><creatorcontrib>Döring, Leif</creatorcontrib><creatorcontrib>Li, Zenghu</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</description><subject>37A25</subject><subject>60J25</subject><subject>Affine process</subject><subject>Differential equations</subject><subject>Ergodic processes</subject><subject>Ergodic theory</subject><subject>ergodicity</subject><subject>Foster-Lyapunov criteria</subject><subject>General Applied Probability</subject><subject>Geometry</subject><subject>Lebesgue measures</subject><subject>Markov processes</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical moments</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Semigroups</subject><subject>stationary distribution</subject><subject>Studies</subject><subject>Symbols</subject><subject>Two dimensional</subject><subject>Two dimensional modeling</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkc1LxDAQxYMouK5evQkFL16qk4-mrSdl8QtWPLh7LmkylZRusyZdxP_eLLusop6GeXn5zeSFkFMKl5Tx8kqp5RUVUHJaZlLskREVeZZKkGKfjACApoXMi0NyFEIbW54XMCLXr4MarOuVt8NnonqT3Pk3Z6xet43zUUpum8b2mMw-XHqv9BDFZ2ewOyYHjeoCnmzrmMzv72aTx3T68vA0uZ2mWkgY0pzVSmuWIRpjWMmYbDTkWsusyVUusOAoWFlQLbAWUqFBVcqSUcAC6ozXfExuNtyldy3qAVe6s6ZaertQ_rNyylaT-XSrbkvMovrOIiIudoj3FYahWtigsetUj24VKioZQEkZ8Gg9_2Vt3cr38YEVzWKYeYyNRtflxqW9C8Fjs1uHQrX-jb8bnG0utCEGuHMLnknOC4jnsAWqRe2tecMfc_9HfgH3I5Vw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Barczy, Mátyás</creator><creator>Döring, Leif</creator><creator>Li, Zenghu</creator><creator>Pap, Gyula</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><author>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>37A25</topic><topic>60J25</topic><topic>Affine process</topic><topic>Differential equations</topic><topic>Ergodic processes</topic><topic>Ergodic theory</topic><topic>ergodicity</topic><topic>Foster-Lyapunov criteria</topic><topic>General Applied Probability</topic><topic>Geometry</topic><topic>Lebesgue measures</topic><topic>Markov processes</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical moments</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Semigroups</topic><topic>stationary distribution</topic><topic>Studies</topic><topic>Symbols</topic><topic>Two dimensional</topic><topic>Two dimensional modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barczy, Mátyás</creatorcontrib><creatorcontrib>Döring, Leif</creatorcontrib><creatorcontrib>Li, Zenghu</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barczy, Mátyás</au><au>Döring, Leif</au><au>Li, Zenghu</au><au>Pap, Gyula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationarity and Ergodicity for an Affine Two-Factor Model</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>46</volume><issue>3</issue><spage>878</spage><epage>898</epage><pages>878-898</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1409319564</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2014-09, Vol.46 (3), p.878-898
issn 0001-8678
1475-6064
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1409319564
source JSTOR Archival Journals and Primary Sources Collection
subjects 37A25
60J25
Affine process
Differential equations
Ergodic processes
Ergodic theory
ergodicity
Foster-Lyapunov criteria
General Applied Probability
Geometry
Lebesgue measures
Markov processes
Martingales
Mathematical analysis
Mathematical models
Mathematical moments
Mathematics
Probability
Probability distribution
Semigroups
stationary distribution
Studies
Symbols
Two dimensional
Two dimensional modeling
title Stationarity and Ergodicity for an Affine Two-Factor Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationarity%20and%20Ergodicity%20for%20an%20Affine%20Two-Factor%20Model&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Barczy,%20M%C3%A1ty%C3%A1s&rft.date=2014-09-01&rft.volume=46&rft.issue=3&rft.spage=878&rft.epage=898&rft.pages=878-898&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1409319564&rft_dat=%3Cjstor_proje%3E43563380%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1560677801&rft_id=info:pmid/&rft_cupid=10_1239_aap_1409319564&rft_jstor_id=43563380&rfr_iscdi=true