Loading…
Stationarity and Ergodicity for an Affine Two-Factor Model
We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1,...
Saved in:
Published in: | Advances in applied probability 2014-09, Vol.46 (3), p.878-898 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3 |
container_end_page | 898 |
container_issue | 3 |
container_start_page | 878 |
container_title | Advances in applied probability |
container_volume | 46 |
creator | Barczy, Mátyás Döring, Leif Li, Zenghu Pap, Gyula |
description | We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case. |
doi_str_mv | 10.1239/aap/1409319564 |
format | article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1409319564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_aap_1409319564</cupid><jstor_id>43563380</jstor_id><sourcerecordid>43563380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</originalsourceid><addsrcrecordid>eNptkc1LxDAQxYMouK5evQkFL16qk4-mrSdl8QtWPLh7LmkylZRusyZdxP_eLLusop6GeXn5zeSFkFMKl5Tx8kqp5RUVUHJaZlLskREVeZZKkGKfjACApoXMi0NyFEIbW54XMCLXr4MarOuVt8NnonqT3Pk3Z6xet43zUUpum8b2mMw-XHqv9BDFZ2ewOyYHjeoCnmzrmMzv72aTx3T68vA0uZ2mWkgY0pzVSmuWIRpjWMmYbDTkWsusyVUusOAoWFlQLbAWUqFBVcqSUcAC6ozXfExuNtyldy3qAVe6s6ZaertQ_rNyylaT-XSrbkvMovrOIiIudoj3FYahWtigsetUj24VKioZQEkZ8Gg9_2Vt3cr38YEVzWKYeYyNRtflxqW9C8Fjs1uHQrX-jb8bnG0utCEGuHMLnknOC4jnsAWqRe2tecMfc_9HfgH3I5Vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560677801</pqid></control><display><type>article</type><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</creator><creatorcontrib>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</creatorcontrib><description>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1239/aap/1409319564</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>37A25 ; 60J25 ; Affine process ; Differential equations ; Ergodic processes ; Ergodic theory ; ergodicity ; Foster-Lyapunov criteria ; General Applied Probability ; Geometry ; Lebesgue measures ; Markov processes ; Martingales ; Mathematical analysis ; Mathematical models ; Mathematical moments ; Mathematics ; Probability ; Probability distribution ; Semigroups ; stationary distribution ; Studies ; Symbols ; Two dimensional ; Two dimensional modeling</subject><ispartof>Advances in applied probability, 2014-09, Vol.46 (3), p.878-898</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © Applied Probability Trust 2014</rights><rights>Copyright Applied Probability Trust Sep 2014</rights><rights>Copyright 2014 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</citedby><cites>FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43563380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43563380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Barczy, Mátyás</creatorcontrib><creatorcontrib>Döring, Leif</creatorcontrib><creatorcontrib>Li, Zenghu</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</description><subject>37A25</subject><subject>60J25</subject><subject>Affine process</subject><subject>Differential equations</subject><subject>Ergodic processes</subject><subject>Ergodic theory</subject><subject>ergodicity</subject><subject>Foster-Lyapunov criteria</subject><subject>General Applied Probability</subject><subject>Geometry</subject><subject>Lebesgue measures</subject><subject>Markov processes</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical moments</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Semigroups</subject><subject>stationary distribution</subject><subject>Studies</subject><subject>Symbols</subject><subject>Two dimensional</subject><subject>Two dimensional modeling</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkc1LxDAQxYMouK5evQkFL16qk4-mrSdl8QtWPLh7LmkylZRusyZdxP_eLLusop6GeXn5zeSFkFMKl5Tx8kqp5RUVUHJaZlLskREVeZZKkGKfjACApoXMi0NyFEIbW54XMCLXr4MarOuVt8NnonqT3Pk3Z6xet43zUUpum8b2mMw-XHqv9BDFZ2ewOyYHjeoCnmzrmMzv72aTx3T68vA0uZ2mWkgY0pzVSmuWIRpjWMmYbDTkWsusyVUusOAoWFlQLbAWUqFBVcqSUcAC6ozXfExuNtyldy3qAVe6s6ZaertQ_rNyylaT-XSrbkvMovrOIiIudoj3FYahWtigsetUj24VKioZQEkZ8Gg9_2Vt3cr38YEVzWKYeYyNRtflxqW9C8Fjs1uHQrX-jb8bnG0utCEGuHMLnknOC4jnsAWqRe2tecMfc_9HfgH3I5Vw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Barczy, Mátyás</creator><creator>Döring, Leif</creator><creator>Li, Zenghu</creator><creator>Pap, Gyula</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Stationarity and Ergodicity for an Affine Two-Factor Model</title><author>Barczy, Mátyás ; Döring, Leif ; Li, Zenghu ; Pap, Gyula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>37A25</topic><topic>60J25</topic><topic>Affine process</topic><topic>Differential equations</topic><topic>Ergodic processes</topic><topic>Ergodic theory</topic><topic>ergodicity</topic><topic>Foster-Lyapunov criteria</topic><topic>General Applied Probability</topic><topic>Geometry</topic><topic>Lebesgue measures</topic><topic>Markov processes</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical moments</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Semigroups</topic><topic>stationary distribution</topic><topic>Studies</topic><topic>Symbols</topic><topic>Two dimensional</topic><topic>Two dimensional modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barczy, Mátyás</creatorcontrib><creatorcontrib>Döring, Leif</creatorcontrib><creatorcontrib>Li, Zenghu</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barczy, Mátyás</au><au>Döring, Leif</au><au>Li, Zenghu</au><au>Pap, Gyula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationarity and Ergodicity for an Affine Two-Factor Model</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>46</volume><issue>3</issue><spage>878</spage><epage>898</epage><pages>878-898</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>We study the existence of a unique stationary distribution and ergodicity for a two-dimensional affine process. Its first coordinate process is supposed to be a so-called α-root process with α ∈ (1, 2]. We prove the existence of a unique stationary distribution for the affine process in the α ∈ (1, 2] case; furthermore, we show ergodicity in the α = 2 case.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/aap/1409319564</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2014-09, Vol.46 (3), p.878-898 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aap_1409319564 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | 37A25 60J25 Affine process Differential equations Ergodic processes Ergodic theory ergodicity Foster-Lyapunov criteria General Applied Probability Geometry Lebesgue measures Markov processes Martingales Mathematical analysis Mathematical models Mathematical moments Mathematics Probability Probability distribution Semigroups stationary distribution Studies Symbols Two dimensional Two dimensional modeling |
title | Stationarity and Ergodicity for an Affine Two-Factor Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationarity%20and%20Ergodicity%20for%20an%20Affine%20Two-Factor%20Model&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Barczy,%20M%C3%A1ty%C3%A1s&rft.date=2014-09-01&rft.volume=46&rft.issue=3&rft.spage=878&rft.epage=898&rft.pages=878-898&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.1239/aap/1409319564&rft_dat=%3Cjstor_proje%3E43563380%3C/jstor_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-72bacc25eeddd29226fc07cc65f7a74e83e42981c4eb46aedea969210e80b53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1560677801&rft_id=info:pmid/&rft_cupid=10_1239_aap_1409319564&rft_jstor_id=43563380&rfr_iscdi=true |