Loading…
VISCOSITY SOLUTIONS OF FULLY NONLINEAR PARABOLIC PATH DEPENDENT PDES: PART I
The main objective of this paper and the accompanying one [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint] is to provide a notion of viscosity solutions for fully nonlinear parabolic path-dependent PDEs. Our definition extends our previous work [Ann. Pr...
Saved in:
Published in: | The Annals of probability 2016-03, Vol.44 (2), p.1212-1253 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main objective of this paper and the accompanying one [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint] is to provide a notion of viscosity solutions for fully nonlinear parabolic path-dependent PDEs. Our definition extends our previous work [Ann. Probab. (2014) 42 204-236], focused on the semilinear case, and is crucially based on the nonlinear optimal stopping problem analyzed in [Stochastic Process. Appl. (2014) 124 3277-3311]. We prove that our notion of viscosity solutions is consistent with the corresponding notion of classical solutions, and satisfies a stability property and a partial comparison result. The latter is a key step for the well-posedness results established in [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint]. We also show that the value processes of path-dependent stochastic control problems are viscosity solutions of the corresponding path-dependent dynamic programming equations. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/14-aop999 |