Loading…

The Screening Effect in Kriging

When predicting the value of a stationary random field at a location x in some region in which one has a large number of observations, it may be difficult to compute the optimal predictor. One simple way to reduce the computational burden is to base the predictor only on those observations nearest t...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2002-02, Vol.30 (1), p.298-323
Main Author: Stein, Michael L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When predicting the value of a stationary random field at a location x in some region in which one has a large number of observations, it may be difficult to compute the optimal predictor. One simple way to reduce the computational burden is to base the predictor only on those observations nearest to x. As long as the number of observations used in the predictor is sufficiently large, one might generally expect the best predictor based on these observations to be nearly optimal relative to the best predictor using all observations. Indeed, this phenomenon has been empirically observed in numerous circumstances and is known as the screening effect in the geostatistical literature. For linear predictors, when observations are on a regular grid, this work proves that there generally is a screening effect as the grid becomes increasingly dense. This result requires that, at high frequencies, the spectral density of the random field not decay faster than algebraically and not vary too quickly. Examples demonstrate that there may be no screening effect if these conditions on the spectral density are violated.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1015362194