Loading…

Resolvable Designs with Large Blocks

Resolvable designs with two blocks per replicate are studied from an optimality perspective. Because in practice the number of replicates is typically less than the number of treatments, arguments can be based on the dual of the information matrix and consequently given in terms of block concurrence...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2007-04, Vol.35 (2), p.747-771
Main Authors: Morgan, J. P., Reck, Brian H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resolvable designs with two blocks per replicate are studied from an optimality perspective. Because in practice the number of replicates is typically less than the number of treatments, arguments can be based on the dual of the information matrix and consequently given in terms of block concurrences. Equalizing block concurrences for given block sizes is often, but not always, the best strategy. Sufficient conditions are established for various strong optimalities and a detailed study of E-optimality is offered, including a characterization of the E-optimal class. Optimal designs are found to correspond to balanced arrays and an affine-like generalization.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053606000001253