Loading…
ESTIMATION IN FUNCTIONAL REGRESSION FOR GENERAL EXPONENTIAL FAMILIES
This paper studies a class of exponential family models whose canonical parameters are specified as linear functionals of an unknown infinite-dimensional slope function. The optimal minimax rates of convergence for slope function estimation are established. The estimators that achieve the optimal ra...
Saved in:
Published in: | The Annals of statistics 2012-10, Vol.40 (5), p.2421-2451 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies a class of exponential family models whose canonical parameters are specified as linear functionals of an unknown infinite-dimensional slope function. The optimal minimax rates of convergence for slope function estimation are established. The estimators that achieve the optimal rates are constructed by constrained maximum likelihood estimation with parameters whose dimension grows with sample size. A change-of-measure argument, inspired by Le Cam's theory of asymptotic equivalence, is used to eliminate the bias caused by the nonlinearity of exponential family models. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/12-AOS1027 |