Loading…

Multiscale Testing of Qualitative Hypotheses

Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f su...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of statistics 2001-02, Vol.29 (1), p.124-152
Main Authors: Dumbgen, Lutz, Spokoiny, Vladimir G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/996986504