Loading…

The two smallest minimal blocking sets of $\q(2n,3)$, $n \geqslant 3

We describe the two smallest minimal blocking sets of {\rm Q}(2n,3), n\geqslant 3. To obtain these results, we use the characterization of the smallest minimal blocking sets of {\rm Q}(6,3), different from an ovoid. We also present some geometrical properties of ovoids of {\rm Q}(6,q), q odd.

Saved in:
Bibliographic Details
Published in:Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2006-01, Vol.12 (5), p.735-742
Main Authors: De Beule, J., Storme, L.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the two smallest minimal blocking sets of {\rm Q}(2n,3), n\geqslant 3. To obtain these results, we use the characterization of the smallest minimal blocking sets of {\rm Q}(6,3), different from an ovoid. We also present some geometrical properties of ovoids of {\rm Q}(6,q), q odd.
ISSN:1370-1444
2034-1970
DOI:10.36045/bbms/1136902611