Loading…

Limits of quasi-Fuchsian groups with small bending

We study limits of quasi-Fuchsian groups for which the bending measures on the convex hull boundary tend to zero, giving necessary and sufficient conditions for the limit group to exist and be Fuchsian. As an application, we complete the proof of a conjecture made in [24, Conjecture 6.5] that the cl...

Full description

Saved in:
Bibliographic Details
Published in:Duke mathematical journal 2005-06, Vol.128 (2), p.285-329
Main Author: Series, Caroline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study limits of quasi-Fuchsian groups for which the bending measures on the convex hull boundary tend to zero, giving necessary and sufficient conditions for the limit group to exist and be Fuchsian. As an application, we complete the proof of a conjecture made in [24, Conjecture 6.5] that the closures of pleating varieties for quasi-Fuchsian groups meet Fuchsian space exactly in Kerckhoff's lines of minima of length functions. Doubling our examples gives rise to a large class of cone manifolds which degenerate to hyperbolic surfaces as the cone angles approach 2 π .
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-04-12823-4