Loading…
Conformal dimension does not assume values between zero and one
We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2]
Saved in:
Published in: | Duke mathematical journal 2006-07, Vol.134 (1), p.1-13 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2] |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-06-13411-7 |