Loading…

Conformal dimension does not assume values between zero and one

We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2]

Saved in:
Bibliographic Details
Published in:Duke mathematical journal 2006-07, Vol.134 (1), p.1-13
Main Author: Kovalev, Leonid V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2]
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-06-13411-7