Loading…
Inverse problems for the anisotropic Maxwell equations
We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniquene...
Saved in:
Published in: | Duke mathematical journal 2011-04, Vol.157 (2), p.369-419 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniqueness result for Maxwell equations in Euclidean space with admissible matrix coefficients. The proofs are based on a new Fourier analytic construction of complex geometrical optics solutions on admissible manifolds and involve a proper notion of uniqueness for such solutions. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-1272903 |