Loading…

Inverse problems for the anisotropic Maxwell equations

We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniquene...

Full description

Saved in:
Bibliographic Details
Published in:Duke mathematical journal 2011-04, Vol.157 (2), p.369-419
Main Authors: Kenig, Carlos E., Salo, Mikko, Uhlmann, Gunther
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3
cites cdi_FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3
container_end_page 419
container_issue 2
container_start_page 369
container_title Duke mathematical journal
container_volume 157
creator Kenig, Carlos E.
Salo, Mikko
Uhlmann, Gunther
description We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniqueness result for Maxwell equations in Euclidean space with admissible matrix coefficients. The proofs are based on a new Fourier analytic construction of complex geometrical optics solutions on admissible manifolds and involve a proper notion of uniqueness for such solutions.
doi_str_mv 10.1215/00127094-1272903
format article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1301059112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_4VJTJW18_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKdY37A4M3aTnIDVbyqIi4tPVqOY4uUtC52CuXvSdTQ02hndmZXQ8g1sBtIQdwyBmnGCk47SAuGJ2QEgmc0wyI_JaNepr1-Ti5iXPVjIdMRkS-bbxuiTbbBl41dx8T5kLQfNtGbOvo2-G1tkle9_7FNk9ivnW5rv4mX5MzpJtqrAcdk8fgwnzzT2dvTy-R-Rg1i3lLk3XWAypVYSumkcWBFjlWac6czLDkXTrjKAjMapCmZQDS6Sg3mHQEWx-TukNu9t7KmtTvT1JXahnqtw6_yulaTxWxgB6jWKwXIgIkCIO0i2CHCBB9jsO7oBqb66tR_dWqorrPQg6WOrd0f93X4VDLDTKhMCsXfp_PpEnK1xD_sCnDq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse problems for the anisotropic Maxwell equations</title><source>Project Euclid Complete</source><creator>Kenig, Carlos E. ; Salo, Mikko ; Uhlmann, Gunther</creator><creatorcontrib>Kenig, Carlos E. ; Salo, Mikko ; Uhlmann, Gunther</creatorcontrib><description>We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniqueness result for Maxwell equations in Euclidean space with admissible matrix coefficients. The proofs are based on a new Fourier analytic construction of complex geometrical optics solutions on admissible manifolds and involve a proper notion of uniqueness for such solutions.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-1272903</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>35Q60 ; 35R30 ; Inverse problems ; PDEs in connection with optics and electromagnetic theory</subject><ispartof>Duke mathematical journal, 2011-04, Vol.157 (2), p.369-419</ispartof><rights>Copyright 2011 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3</citedby><cites>FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Kenig, Carlos E.</creatorcontrib><creatorcontrib>Salo, Mikko</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><title>Inverse problems for the anisotropic Maxwell equations</title><title>Duke mathematical journal</title><description>We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniqueness result for Maxwell equations in Euclidean space with admissible matrix coefficients. The proofs are based on a new Fourier analytic construction of complex geometrical optics solutions on admissible manifolds and involve a proper notion of uniqueness for such solutions.</description><subject>35Q60</subject><subject>35R30</subject><subject>Inverse problems</subject><subject>PDEs in connection with optics and electromagnetic theory</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKdY37A4M3aTnIDVbyqIi4tPVqOY4uUtC52CuXvSdTQ02hndmZXQ8g1sBtIQdwyBmnGCk47SAuGJ2QEgmc0wyI_JaNepr1-Ti5iXPVjIdMRkS-bbxuiTbbBl41dx8T5kLQfNtGbOvo2-G1tkle9_7FNk9ivnW5rv4mX5MzpJtqrAcdk8fgwnzzT2dvTy-R-Rg1i3lLk3XWAypVYSumkcWBFjlWac6czLDkXTrjKAjMapCmZQDS6Sg3mHQEWx-TukNu9t7KmtTvT1JXahnqtw6_yulaTxWxgB6jWKwXIgIkCIO0i2CHCBB9jsO7oBqb66tR_dWqorrPQg6WOrd0f93X4VDLDTKhMCsXfp_PpEnK1xD_sCnDq</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Kenig, Carlos E.</creator><creator>Salo, Mikko</creator><creator>Uhlmann, Gunther</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110401</creationdate><title>Inverse problems for the anisotropic Maxwell equations</title><author>Kenig, Carlos E. ; Salo, Mikko ; Uhlmann, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>35Q60</topic><topic>35R30</topic><topic>Inverse problems</topic><topic>PDEs in connection with optics and electromagnetic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenig, Carlos E.</creatorcontrib><creatorcontrib>Salo, Mikko</creatorcontrib><creatorcontrib>Uhlmann, Gunther</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenig, Carlos E.</au><au>Salo, Mikko</au><au>Uhlmann, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse problems for the anisotropic Maxwell equations</atitle><jtitle>Duke mathematical journal</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>157</volume><issue>2</issue><spage>369</spage><epage>419</epage><pages>369-419</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>We prove that the electromagnetic material parameters are uniquely determined by boundary measurements for the time-harmonic Maxwell equations in certain anisotropic settings. We give a uniqueness result in the inverse problem for Maxwell equations on an admissible Riemannian manifold and a uniqueness result for Maxwell equations in Euclidean space with admissible matrix coefficients. The proofs are based on a new Fourier analytic construction of complex geometrical optics solutions on admissible manifolds and involve a proper notion of uniqueness for such solutions.</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-1272903</doi><tpages>51</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2011-04, Vol.157 (2), p.369-419
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1301059112
source Project Euclid Complete
subjects 35Q60
35R30
Inverse problems
PDEs in connection with optics and electromagnetic theory
title Inverse problems for the anisotropic Maxwell equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20problems%20for%20the%20anisotropic%20Maxwell%20equations&rft.jtitle=Duke%20mathematical%20journal&rft.au=Kenig,%20Carlos%20E.&rft.date=2011-04-01&rft.volume=157&rft.issue=2&rft.spage=369&rft.epage=419&rft.pages=369-419&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-1272903&rft_dat=%3Cistex_proje%3Eark_67375_765_4VJTJW18_W%3C/istex_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-3439811dfb3b66f6cf1e583d284fa73b445f5fde10ca16cb0533cad2c38ca11e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true