Loading…
Expander graphs, gonality, and variation of Galois representations
We show that families of coverings of an algebraic curve where the associated Cayley–Schreier graphs form an expander family exhibit strong forms of geometric growth. We then give many arithmetic applications of this general result, obtained by combining it with finiteness statements for rational po...
Saved in:
Published in: | Duke mathematical journal 2012-05, Vol.161 (7), p.1233-1275 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that families of coverings of an algebraic curve where the associated Cayley–Schreier graphs form an expander family exhibit strong forms of geometric growth. We then give many arithmetic applications of this general result, obtained by combining it with finiteness statements for rational points of curves with large gonality. In particular, we derive a number of results concerning the variation of Galois representations in one-parameter families of abelian varieties. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/00127094-1593272 |