Loading…
Regenerative processes in the infinite mean cycle case
A class of non-negative alternating regenerative processes is considered, where the process stays at zero random time (waiting period), then it jumps to a random positive level and hits zero after some random period (life period), depending on the evolution of the process. It is assumed that the wai...
Saved in:
Published in: | Journal of applied probability 2001-03, Vol.38 (1), p.165-179 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A class of non-negative alternating regenerative processes is considered, where the process stays at zero random time (waiting period), then it jumps to a random positive level and hits zero after some random period (life period), depending on the evolution of the process. It is assumed that the waiting time and the lifetime belong to the domain of attraction of stable laws with parameters in the interval (½,1]. An integral representation for the distribution functions of the regenerative process is obtained, using the spent time distributions of the corresponding alternating renewal process. Given the asymptotic behaviour of the process in the regenerative cycle, different types of limiting distributions are proved, applying some new results for the corresponding renewal process and two limit theorems for the convergence in distribution. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1239/jap/996986651 |