Loading…
Higher homotopy commutativity and the resultohedra
We define a higher homotopy commutativity for the multiplication of a topological monoid. To give the definition, we use the resultohedra constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy commutativity, we have necessary and sufficient conditions for the classifying space of...
Saved in:
Published in: | Journal of the Mathematical Society of Japan 2011, Vol.63 (2), p.443-471 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define a higher homotopy commutativity for the multiplication of a topological monoid. To give the definition, we use the resultohedra constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy commutativity, we have necessary and sufficient conditions for the classifying space of a topological monoid to have a special structure considered by Félix, Tanré and Aguadé. It is also shown that our higher homotopy commutativity is rationally equivalent to the one of Williams. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/06320443 |