Loading…
On the theory of multilinear Littlewood–Paley $g$-function
Let m \ge 2 and define the multilinear Littlewood–Paley g-function by ¶ g(\vec{f})(x)=\bigg(\int_{0}^{\infty} \bigg| \frac{1}{t^{mn}}\int_{(\mathbb{R}^n)^m} \psi\bigg(\frac{y_1}{t},\dots,\frac{y_m}{t}\bigg) \prod_{j=1}^mf_j(x-y_j)dy_{j}\bigg|^2 \frac{dt}{t} \bigg)^{1/2}. ¶ In this paper, we establis...
Saved in:
Published in: | Journal of the Mathematical Society of Japan 2015, Vol.67 (2), p.535-559 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let m \ge 2 and define the multilinear Littlewood–Paley g-function by
¶ g(\vec{f})(x)=\bigg(\int_{0}^{\infty} \bigg| \frac{1}{t^{mn}}\int_{(\mathbb{R}^n)^m} \psi\bigg(\frac{y_1}{t},\dots,\frac{y_m}{t}\bigg) \prod_{j=1}^mf_j(x-y_j)dy_{j}\bigg|^2 \frac{dt}{t} \bigg)^{1/2}.
¶ In this paper, we establish the strong L^{p_1}(w_1)\times \dots \times L^{p_m}(w_m) to L^p(\nu_{\vec{\omega}}) boundedness and weak type L^{p_1}(w_1)\times \dots \times L^{p_m}(w_m) to L^{p,\infty}(\nu_{\vec{\omega}}) estimate for the multilinear g-function. The weighted strong and end-point estimates for the iterated commutators of g-function are also given. Here \nu_{\vec{\omega}} = \prod_{i = 1}^m\omega_i^{{p}/{p_i}} and each w_i is a nonnegative function on \mathbb{R}^n. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/06720535 |