Loading…
Toric geometry of convex quadrilaterals
We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a bypro...
Saved in:
Published in: | Journal of symplectic geometry 2011, Vol.9 (3), p.343-385 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of Kähler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics. |
---|---|
ISSN: | 1527-5256 1540-2347 |
DOI: | 10.4310/JSG.2011.v9.n3.a3 |