Loading…

Toric geometry of convex quadrilaterals

We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a bypro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of symplectic geometry 2011, Vol.9 (3), p.343-385
Main Author: Legendre, Eveline
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-1343f9e85e3ae5c878ce09fbeb323404998f02f4708c86d24dc0739fe96eac3b3
cites
container_end_page 385
container_issue 3
container_start_page 343
container_title Journal of symplectic geometry
container_volume 9
creator Legendre, Eveline
description We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of Kähler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics.
doi_str_mv 10.4310/JSG.2011.v9.n3.a3
format article
fullrecord <record><control><sourceid>hal_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsg_1310388900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00715610v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-1343f9e85e3ae5c878ce09fbeb323404998f02f4708c86d24dc0739fe96eac3b3</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsFZ_gLfcxEPibGaT7N4sRVsl4MH2vGw3szUlbeomDfbfm9AieHrD473H8DF2zyESyOHp_XMWxcB51Kloh5HBCzbiiYAwRpFdDnechUmcpNfspmk2AFxIjEfsYVH70gZrqrfU-mNQu8DWu45-gu-DKXxZmZa8qZpbduV6obuzjtny9WUxnYf5x-xtOslDi5lqQ44CnSKZEBpKrMykJVBuRSvsHwGhlHQQO5GBtDItYlFYyFA5UikZiyscs-fT7t7XG7ItHWxVFnrvy63xR12bUk-X-dk9y6ZZa95DQCkVQD_xeJr4MtW_4nyS68EDyHiScuh4n-WnrPV103hyfwUOegCre7B6AKs7pXeoDeIvX2dsRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toric geometry of convex quadrilaterals</title><source>International Press Journals</source><creator>Legendre, Eveline</creator><creatorcontrib>Legendre, Eveline</creatorcontrib><description>We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of Kähler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics.</description><identifier>ISSN: 1527-5256</identifier><identifier>EISSN: 1540-2347</identifier><identifier>DOI: 10.4310/JSG.2011.v9.n3.a3</identifier><language>eng</language><publisher>International Press</publisher><subject>Differential Geometry ; Mathematics ; Symplectic Geometry</subject><ispartof>Journal of symplectic geometry, 2011, Vol.9 (3), p.343-385</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2011 International Press of Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-1343f9e85e3ae5c878ce09fbeb323404998f02f4708c86d24dc0739fe96eac3b3</citedby><orcidid>0000-0002-5569-8472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00715610$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Legendre, Eveline</creatorcontrib><title>Toric geometry of convex quadrilaterals</title><title>Journal of symplectic geometry</title><description>We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of Kähler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><subject>Symplectic Geometry</subject><issn>1527-5256</issn><issn>1540-2347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLw0AQhRdRsFZ_gLfcxEPibGaT7N4sRVsl4MH2vGw3szUlbeomDfbfm9AieHrD473H8DF2zyESyOHp_XMWxcB51Kloh5HBCzbiiYAwRpFdDnechUmcpNfspmk2AFxIjEfsYVH70gZrqrfU-mNQu8DWu45-gu-DKXxZmZa8qZpbduV6obuzjtny9WUxnYf5x-xtOslDi5lqQ44CnSKZEBpKrMykJVBuRSvsHwGhlHQQO5GBtDItYlFYyFA5UikZiyscs-fT7t7XG7ItHWxVFnrvy63xR12bUk-X-dk9y6ZZa95DQCkVQD_xeJr4MtW_4nyS68EDyHiScuh4n-WnrPV103hyfwUOegCre7B6AKs7pXeoDeIvX2dsRw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Legendre, Eveline</creator><general>International Press</general><general>International Press of Boston</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5569-8472</orcidid></search><sort><creationdate>2011</creationdate><title>Toric geometry of convex quadrilaterals</title><author>Legendre, Eveline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-1343f9e85e3ae5c878ce09fbeb323404998f02f4708c86d24dc0739fe96eac3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><topic>Symplectic Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legendre, Eveline</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of symplectic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legendre, Eveline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toric geometry of convex quadrilaterals</atitle><jtitle>Journal of symplectic geometry</jtitle><date>2011</date><risdate>2011</risdate><volume>9</volume><issue>3</issue><spage>343</spage><epage>385</epage><pages>343-385</pages><issn>1527-5256</issn><eissn>1540-2347</eissn><abstract>We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric Kähler-Einstein and toric Sasaki-Einstein metrics constructed in [6,22,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including Kähler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of Kähler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics.</abstract><pub>International Press</pub><doi>10.4310/JSG.2011.v9.n3.a3</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-5569-8472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1527-5256
ispartof Journal of symplectic geometry, 2011, Vol.9 (3), p.343-385
issn 1527-5256
1540-2347
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsg_1310388900
source International Press Journals
subjects Differential Geometry
Mathematics
Symplectic Geometry
title Toric geometry of convex quadrilaterals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toric%20geometry%20of%20convex%20quadrilaterals&rft.jtitle=Journal%20of%20symplectic%20geometry&rft.au=Legendre,%20Eveline&rft.date=2011&rft.volume=9&rft.issue=3&rft.spage=343&rft.epage=385&rft.pages=343-385&rft.issn=1527-5256&rft.eissn=1540-2347&rft_id=info:doi/10.4310/JSG.2011.v9.n3.a3&rft_dat=%3Chal_proje%3Eoai_HAL_hal_00715610v1%3C/hal_proje%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-1343f9e85e3ae5c878ce09fbeb323404998f02f4708c86d24dc0739fe96eac3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true