Loading…
Generic substitutions
Up to equivalence, a substitution in propositional logic is an endomorphism of its free algebra. On the dual space, this results in a continuous function, and whenever the space carries a natural measure one may ask about the stochastic properties of the action. In classical logic there is a strong...
Saved in:
Published in: | The Journal of symbolic logic 2005-03, Vol.70 (1), p.61-83 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Up to equivalence, a substitution in propositional logic is an endomorphism of its free algebra. On the dual space, this results in a continuous function, and whenever the space carries a natural measure one may ask about the stochastic properties of the action. In classical logic there is a strong dichotomy: while over finitely many propositional variables everything is trivial, the study of the continuous transformations of the Cantor space is the subject of an extensive literature, and is far from being a completed task. In many-valued logic this dichotomy disappears: already in the finite-variable case many interesting phenomena occur, and the present paper aims at displaying some of these. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2178/jsl/1107298510 |