Loading…
Codable sets and orbits of computably enumerable sets
A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let ε denote the structure of the computably enumerable sets under inclusion, $\varepsilon = (\{W_e\}_{e\in \omega}, \subseteq)$. We previ...
Saved in:
Published in: | The Journal of symbolic logic 1998-03, Vol.63 (1), p.1-28 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A set X of nonnegative integers is computably enumerable (c.e.), also called recursively enumerable (r.e.), if there is a computable method to list its elements. Let ε denote the structure of the computably enumerable sets under inclusion, $\varepsilon = (\{W_e\}_{e\in \omega}, \subseteq)$. We previously exhibited a first order ε-definable property Q(X) such that Q(X) guarantees that X is not Turing complete (i.e., does not code complete information about c.e. sets). Here we show first that Q(X) implies that X has a certain "slowness" property whereby the elements must enter X slowly (under a certain precise complexity measure of speed of computation) even though X may have high information content. Second we prove that every X with this slowness property is computable in some member of any nontrivial orbit, namely for any noncomputable A ∈ ε there exists B in the orbit of A such that X ≤T B under relative Turing computability (≤T). We produce B using the Δ03-automorphism method we introduced earlier. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2307/2586583 |