Loading…
The emptiness problem for intersection types
We study the intersection type assignment system as defined by Barendregt, Coppo and Dezani. For the four essential variants of the system (with and without a universal type and with and without subtyping) we show that the emptiness (inhabitation) problem is recursively unsolvable. That is, there is...
Saved in:
Published in: | The Journal of symbolic logic 1999-09, Vol.64 (3), p.1195-1215 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the intersection type assignment system as defined by Barendregt, Coppo and Dezani. For the four essential variants of the system (with and without a universal type and with and without subtyping) we show that the emptiness (inhabitation) problem is recursively unsolvable. That is, there is no effective algorithm to decide if there is a closed term of a given type. It follows that provability in the logic of "strong conjunction" of Mints and Lopez-Escobar is also undecidable. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2307/2586625 |