Loading…

The club principle and the distributivity number

We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of symbolic logic 2011-03, Vol.76 (1), p.34-46
Main Author: Mildenberger, Heike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and that all strengthenings of a condition are subsets, and replace many names by actual sets. There are two types of technique: one for tree-like forcings and one for forcings with creatures that are translated into trees. Both lead to new models of the club principle.
ISSN:0022-4812
1943-5886
DOI:10.2178/jsl/1294170988