Loading…
The club principle and the distributivity number
We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and t...
Saved in:
Published in: | The Journal of symbolic logic 2011-03, Vol.76 (1), p.34-46 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and that all strengthenings of a condition are subsets, and replace many names by actual sets. There are two types of technique: one for tree-like forcings and one for forcings with creatures that are translated into trees. Both lead to new models of the club principle. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2178/jsl/1294170988 |