Loading…
On the jump classes of noncuppable enumeration degrees
We prove that for every ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degree b there exists a noncuppable ${\mathrm{\Sigma }}_{2}^{0}$ degree a > 0 e such that b′ ≤ e a′ and a″ ≤ e b″. This allows us to deduce, from results on the high/low jump hierarchy in the local Turing degrees and the jump preser...
Saved in:
Published in: | The Journal of symbolic logic 2011-03, Vol.76 (1), p.177-197 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that for every ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degree b there exists a noncuppable ${\mathrm{\Sigma }}_{2}^{0}$ degree a > 0 e such that b′ ≤ e a′ and a″ ≤ e b″. This allows us to deduce, from results on the high/low jump hierarchy in the local Turing degrees and the jump preserving properties of the standard embedding l: D T → D e , that there exist ${\mathrm{\Sigma }}_{2}^{0}$ noncuppable enumeration degrees at every possible—i.e., above low₁—level of the high/low jump hierarchy in the context of D e . |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.2178/jsl/1294170994 |