Loading…
Harder–Narasimhan reduction of a principal bundle
Let E be a principal G–bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero....
Saved in:
Published in: | Nagoya mathematical journal 2004, Vol.174, p.201-223 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let E be a principal G–bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero. Under a mild assumption on the characteristic, the uniqueness is also proved when the characteristic of k is positive. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/S0027763000008850 |