Loading…
GENERALIZED UMEMURA POLYNOMIALS
We introduce and study generalized Umemura polynomials $U_{n,m}^{\left( k \right)}\left( {z,w:a,b} \right)$ which are a natural generalization of the Umemura polynomials Un(z, w; a, b) related to Painlevé VI equation. We will show that if a = b or a = 0 or b = 0, then polynomials $U_{n.m}^{\left( 0...
Saved in:
Published in: | The Rocky Mountain journal of mathematics 2002-06, Vol.32 (2), p.691-702 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce and study generalized Umemura polynomials $U_{n,m}^{\left( k \right)}\left( {z,w:a,b} \right)$ which are a natural generalization of the Umemura polynomials Un(z, w; a, b) related to Painlevé VI equation. We will show that if a = b or a = 0 or b = 0, then polynomials $U_{n.m}^{\left( 0 \right)}\left( {z,w;a,b} \right)$ generate solutions to Painlevé VI. We will describe a connection between polynomials $U_{n.m}^{\left( 0 \right)}\left( {z,w;a,0} \right)$ and certain Umemura polynomials Uk(z, w; α, β). |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/rmjm/1030539693 |