Loading…

An adaptive PLL tuning system architecture combining high spectral purity and fast settling time

An adaptive phase-locked loop (PLL) architecture for high-performance tuning systems is described. The architecture combines contradictory requirements posed by different performance aspects. Adaptation of loop parameters occurs continuously, without switching of loop filter components, and without...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2000-04, Vol.35 (4), p.490-502
Main Author: Vaucher, C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An adaptive phase-locked loop (PLL) architecture for high-performance tuning systems is described. The architecture combines contradictory requirements posed by different performance aspects. Adaptation of loop parameters occurs continuously, without switching of loop filter components, and without interaction from outside of the tuning system. The relationship of performance aspects (settling time, phase noise, and spurious signals) to design variables (loop bandwidth, phase margin, and loop filter attenuation at the reference frequency) are presented, and the basic tradeoffs of the new concept are discussed. A circuit implementation of the adaptive PLL, optimized for use in a multiband (global) car-radio tuner IC, is described in detail. The realized tuning system achieved state-of-the-art settling time and spectral purity performance in its class (integer-N PLLs): a signal-to-noise ratio of 65 dB, a 100-kHz spurious reference breakthrough signal under -81 dBc, and a residual settling error of 3 kHz after 1 ms, for a 20-MHz frequency step. It simultaneously fulfills the speed requirements for inaudible frequency hopping and the heavy signal-to-noise ratio specification of 64 dB.
ISSN:0018-9200
1558-173X
DOI:10.1109/4.839909