Loading…
Multi-Class Anisotropic Electrostatic Halftoning
Electrostatic halftoning, a sampling algorithm based on electrostatic principles, is among the leading methods for stippling, dithering and sampling. However, this approach is only applicable for a single class of dots with a uniform size and colour. In our work, we complement these ideas by advance...
Saved in:
Published in: | Computer graphics forum 2012-09, Vol.31 (6), p.1924-1935 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrostatic halftoning, a sampling algorithm based on electrostatic principles, is among the leading methods for stippling, dithering and sampling. However, this approach is only applicable for a single class of dots with a uniform size and colour. In our work, we complement these ideas by advanced features for real‐world applications. We propose a versatile framework for colour halftoning, hatching and multi‐class importance sampling with individual weights. Our novel approach is the first method that globally optimizes the distribution of different objects in varying sizes relative to multiple given density functions. The quality, versatility and adaptability of our approach is demonstrated in various experiments.
Electrostatic halftoning, a sampling algorithm based on electrostatic principles, is among the leading methods for stippling, dithering and sampling. However, this approach is only applicable for a single class of dots with a uniform size and colour. In our work, we complement these ideas by advanced features for real‐world applications. We propose a versatile framework for colour halftoning, hatching and multi‐class importance sampling with individual weights. Our novel approach is the first method that globally optimizes the distribution of different objects in varying sizes relative to multiple given density functions. The quality, versatility and adaptability of our approach is demonstrated in various experiments. |
---|---|
ISSN: | 0167-7055 1467-8659 |
DOI: | 10.1111/j.1467-8659.2012.03072.x |