Loading…
Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control
A global feedback control of a system that exhibits a subcritical monotonic instability at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The method based on a variati...
Saved in:
Published in: | Mathematical modelling of natural phenomena 2011, Vol.6 (1), p.188-208 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A global feedback control of a system that exhibits a subcritical monotonic instability at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The method based on a variational principle is applied for the derivation of a low-dimensional evolution model. In the framework of this model the investigation of the system’s dynamics and the linear and nonlinear stability analysis are carried out. The obtained results are compared with the results of direct numerical simulations of the original problem. |
---|---|
ISSN: | 0973-5348 1760-6101 |
DOI: | 10.1051/mmnp/20116110 |