Loading…
Hamiltonian Embedding in Crossed Cubes with Failed Links
The crossed cube is a prominent variant of the well known, highly regular-structured hypercube. In [24], it is shown that due to the loss of regularity in link topology, generating Hamiltonian cycles, even in a healthy crossed cube, is a more complicated procedure than in the hypercube, and fewer Ha...
Saved in:
Published in: | IEEE transactions on parallel and distributed systems 2012-11, Vol.23 (11), p.2117-2124 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The crossed cube is a prominent variant of the well known, highly regular-structured hypercube. In [24], it is shown that due to the loss of regularity in link topology, generating Hamiltonian cycles, even in a healthy crossed cube, is a more complicated procedure than in the hypercube, and fewer Hamiltonian cycles can be generated in the crossed cube. Because of the importance of fault-tolerance in interconnection networks, in this paper, we treat the problem of embedding Hamiltonian cycles into a crossed cube with failed links. We establish a relationship between the faulty link distribution and the crossed cube's tolerability. A succinct algorithm is proposed to find a Hamiltonian cycle in a CQ n tolerating up to n-2 failed links. |
---|---|
ISSN: | 1045-9219 1558-2183 |
DOI: | 10.1109/TPDS.2012.30 |