Loading…
Lattice Boltzmann method simulation of electroosmotic stirring in a microscale cavity
The suitable surface modification of microfluidic channels can enable a neutral electrolyte solution to develop an electric double layer (EDL). The ions contained within the EDL can be moved by applying an external electric field, inducing electroosmotic flows (EOFs) that results in associated stirr...
Saved in:
Published in: | Microfluidics and nanofluidics 2008-05, Vol.4 (5), p.463-470 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The suitable surface modification of microfluidic channels can enable a neutral electrolyte solution to develop an electric double layer (EDL). The ions contained within the EDL can be moved by applying an external electric field, inducing electroosmotic flows (EOFs) that results in associated stirring. This provides a solution for the rapid mixing required for many microfluidic applications. We have investigated EOFs generated by applying a steady electric field across a square cavity that has homogenous electric potentials along its walls. The flowfield is simulated using the lattice Boltzmann method. The extent of mixing is characterized for different electrode configurations and electric field strengths. We find that rapid mixing can be achieved by using this simple configuration which increases with increasing electric field strength. The mixing time for water-soluble organic molecules can be decreased by four orders of magnitude by suitable choice of wall zeta potential and electric field. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-007-0224-x |