Loading…
A p-adic probability logic
In this article we present a p‐adic valued probabilistic logic \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} which is a complete and decidable extension of classical propositional logic. The key feature of \documentclass{arti...
Saved in:
Published in: | Mathematical logic quarterly 2012-08, Vol.58 (4-5), p.263-280 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we present a p‐adic valued probabilistic logic \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} which is a complete and decidable extension of classical propositional logic. The key feature of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} lies in ability to formally express boundaries of probability values of classical formulas in the field \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} of p‐adic numbers via classical connectives and modal‐like operators of the form Kr, ρ. Namely, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} is designed in such a way that the elementary probability sentences Kr, ρα actually do have their intended meaning—the probability of propositional formula α is in the \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document}‐ball with the center r and the radius ρ. Due to modal nature of the operators Kr, ρ, it was natural to use the probability Kripke like models as \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document}‐structures, provided that probability functions range over \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} instead of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}$\end{document} or \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$^*\mathbb {R}$\end{document}. |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.201110006 |