Loading…

A p-adic probability logic

In this article we present a p‐adic valued probabilistic logic \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} which is a complete and decidable extension of classical propositional logic. The key feature of \documentclass{arti...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical logic quarterly 2012-08, Vol.58 (4-5), p.263-280
Main Authors: Ilić-Stepić, Angelina, Ognjanović, Zoran, Ikodinović, Nebojša, Perović, Aleksandar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article we present a p‐adic valued probabilistic logic \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} which is a complete and decidable extension of classical propositional logic. The key feature of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} lies in ability to formally express boundaries of probability values of classical formulas in the field \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} of p‐adic numbers via classical connectives and modal‐like operators of the form Kr, ρ. Namely, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document} is designed in such a way that the elementary probability sentences Kr, ρα actually do have their intended meaning—the probability of propositional formula α is in the \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document}‐ball with the center r and the radius ρ. Due to modal nature of the operators Kr, ρ, it was natural to use the probability Kripke like models as \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}_{\mathbb {Q}_p}$\end{document}‐structures, provided that probability functions range over \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {Q}_p$\end{document} instead of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}$\end{document} or \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$^*\mathbb {R}$\end{document}.
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.201110006