Loading…

Signal Recovery on Incoherent Manifolds

Suppose that we observe noisy linear measurements of an unknown signal that can be modeled as the sum of two component signals, each of which arises from a nonlinear submanifold of a high-dimensional ambient space. We introduce successive projections onto incoherent manifolds (SPIN), a first-order p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2012-12, Vol.58 (12), p.7204-7214
Main Authors: Hegde, C., Baraniuk, R. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Suppose that we observe noisy linear measurements of an unknown signal that can be modeled as the sum of two component signals, each of which arises from a nonlinear submanifold of a high-dimensional ambient space. We introduce successive projections onto incoherent manifolds (SPIN), a first-order projected gradient method to recover the signal components. Despite the nonconvex nature of the recovery problem and the possibility of underdetermined measurements, SPIN provably recovers the signal components, provided that the signal manifolds are incoherent and that the measurement operator satisfies a certain restricted isometry property. SPIN significantly extends the scope of current recovery models and algorithms for low-dimensional linear inverse problems and matches (or exceeds) the current state of the art in terms of performance.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2210860