Loading…

Family of piecewise expanding maps having singular measure as a limit of ACIMs

Keller [Stochastic stability in some chaotic dynamical systems. Monatsh. Math.94(4) (1982), 313–333] introduced families of W-shaped maps that can have a great variety of behaviors. As a family approaches a limit W map, he observed behavior that was either described by a probability density function...

Full description

Saved in:
Bibliographic Details
Published in:Ergodic theory and dynamical systems 2013-02, Vol.33 (1), p.158-167
Main Authors: LI, ZHENYANG, GÓRA, PAWEŁ, BOYARSKY, ABRAHAM, PROPPE, HARALD, ESLAMI, PEYMAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Keller [Stochastic stability in some chaotic dynamical systems. Monatsh. Math.94(4) (1982), 313–333] introduced families of W-shaped maps that can have a great variety of behaviors. As a family approaches a limit W map, he observed behavior that was either described by a probability density function (PDF) or by a singular point measure. Based on this, Keller conjectured that instability of the absolutely continuous invariant measure (ACIM) can result only from the existence of small invariant neighborhoods of the fixed critical point of the limit map. In this paper, we show that the conjecture is not true. We construct a very simple family of W-maps with ACIMs supported on the whole interval, whose limiting dynamical behavior is captured by a singular measure. Key to the analysis is the use of a general formula for invariant densities of piecewise linear and expanding maps [P. Góra. Invariant densities for piecewise linear maps of interval. Ergod. Th. & Dynam. Sys. 29(5) (2009), 1549–1583].
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385711000836