Loading…
Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems
We study the number of visits to balls Br(x), up to time t/μ(Br(x)), for a class of non-uniformly hyperbolic dynamical systems, where μ is the Sinai–Ruelle–Bowen measure. Outside a set of ‘bad’ centers x, we prove that this number is approximately Poissonnian with a controlled error term. In particu...
Saved in:
Published in: | Ergodic theory and dynamical systems 2013-02, Vol.33 (1), p.49-80 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the number of visits to balls Br(x), up to time t/μ(Br(x)), for a class of non-uniformly hyperbolic dynamical systems, where μ is the Sinai–Ruelle–Bowen measure. Outside a set of ‘bad’ centers x, we prove that this number is approximately Poissonnian with a controlled error term. In particular, when r→0, we get convergence to the Poisson law for a set of centers of μ-measure one. Our theorem applies for instance to the Hénon attractor and, more generally, to systems modelled by a Young tower whose return-time function has an exponential tail and with one-dimensional unstable manifolds. Along the way, we prove an abstract Poisson approximation result of independent interest. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385711000897 |