Loading…
The beta log-normal distribution
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We...
Saved in:
Published in: | Journal of statistical computation and simulation 2013-02, Vol.83 (2), p.203-228 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum-Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2011.599809 |