Loading…
Fractional Directional Differentiation and Its Application for Multiscale Texture Enhancement
This paper derives the directional derivative expression of Taylor formula for two-variable function from Taylor formula of one-variable function. Further, it proposes a new concept, fractional directional differentiation (FDD), and corresponding theories. To achieve the numerical calculation, the p...
Saved in:
Published in: | Mathematical Problems in Engineering 2012-01, Vol.2012 (2012), p.1067-1092-162 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper derives the directional derivative expression of Taylor formula for two-variable function from Taylor formula of one-variable function. Further, it proposes a new concept, fractional directional differentiation (FDD), and corresponding theories. To achieve the numerical calculation, the paper deduces power series expression of FDD. Moreover, the paper discusses the construction of FDD mask in the four quadrants, respectively, for digital image. The differential coefficients of every direction are not the same along the eight directions in the four quadrants, which is the biggest difference by contrast to general fractional differentiation and can reflect different fractional change rates along different directions, and this benefits to enlarge the differences among the image textures. Experiments show that, for texture-rich digital images, the capability of nonlinearly enhancing comprehensive texture details by FDD is better than those by the general fractional differentiation and Butterworth filter. By quantity analysis, it shows that state-of-the-art effect of texture enhancement is obtained by FDD. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2012/325785 |