Loading…

Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

Thermally denatured human serum albumin interacts with ~3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured pro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013, Vol.15 (1), p.1, Article 1374
Main Authors: Alarcon, Emilio I., Bueno-Alejo, Carlos J., Noel, Christopher W., Stamplecoskie, Kevin G., Pacioni, Natalia L., Poblete, Horacio, Scaiano, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermally denatured human serum albumin interacts with ~3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH 2 blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank’s buffer, Tris–HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag + ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH 2 in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH 2 blocking, leading primarily to cubes and plates with sizes around 5–15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA@AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-012-1374-7