Loading…

Three-dimensional movement trajectories in Fitts' task: Implications for control

According to Fitts (1954), movement time (MT) is a function of the combined effects of movement amplitude and target width (index of difficulty). Aiming movements with the same index of difficulty and MT may have different planning and control processes depending on the specific combination of movem...

Full description

Saved in:
Bibliographic Details
Published in:The Quarterly journal of experimental psychology. A, Human experimental psychology Human experimental psychology, 1987-11, Vol.39 (4), p.629-647
Main Authors: MacKenzie, C. L., Marteniuk, R. G., Dugas, C., Liske, D., Eickmeier, B.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:According to Fitts (1954), movement time (MT) is a function of the combined effects of movement amplitude and target width (index of difficulty). Aiming movements with the same index of difficulty and MT may have different planning and control processes depending on the specific combination of movement amplitude and target size. Trajectories were evaluated for a broad range of amplitudes and target sizes. A three-dimensional motion recording system (WATSMART) monitored the position of a stylus during aiming movements. MT results replicated Fitts' Law. Analysis of the resultant velocity profiles indicated the following significant effects: As amplitude of movement increased, so did the time to peak resultant velocity; peak resultant velocity increased slightly with target size, and to a greater extent with increases in the amplitude of movement; the time after peak resultant velocity was a function of both amplitude and target size. Resultant velocity profiles were normalized in the time domain to look for scalar relation in the trajectory shape. This revealed that: the resultant velocity profiles were not symmetrical; the proportion of time spent prior to and after peak speed was sensitive to target size only, i.e. as target size decreased, the profiles became more skewed to the right, indicating a longer decelerative phase; for a given target size, a family of curves might be defined and scaled on movement amplitude. These results suggest that a generalized program (base trajectory representation) exists for a given target width and is parameterized or scaled according to the amplitude of movement.
ISSN:0272-4987
1464-0740
DOI:10.1080/14640748708401806