Loading…
Stability in Models of Mutualism
A simple test for global stability in a large class of nonlinear models of mutualism is derived. In Lotka-Volterra models of mutualism, local stability implies global stability. In the space of the interaction parameters, the continuum of stable Lotka-Volterra models of two-species mutualism is equa...
Saved in:
Published in: | The American naturalist 1979-02, Vol.113 (2), p.261-275 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple test for global stability in a large class of nonlinear models of mutualism is derived. In Lotka-Volterra models of mutualism, local stability implies global stability. In the space of the interaction parameters, the continuum of stable Lotka-Volterra models of two-species mutualism is equal to the continuum of stable Lotka-Volterra models of competition, but it is smaller than the continuum of stable Lotka-Volterra models of a single-prey and a single-predator interaction. For three or more species the continuum of globally stable Lotka-Volterra models of mutualism is smaller than the continuum of globally stable Lotka-Volterra models of competition or prey-predator interactions. This mathematical result suggests that in nature mutualism is less common than competition and predation. |
---|---|
ISSN: | 0003-0147 1537-5323 |
DOI: | 10.1086/283384 |