Loading…
A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence
Wafer bin maps (WBM) in circuit probe (CP) tests that present specific defect patterns provide crucial information to identifying assignable causes in the semiconductor manufacturing process. However, most semiconductor companies rely on engineers using eyeball analysis to judge defect patterns, whi...
Saved in:
Published in: | International journal of production research 2013-04, Vol.51 (8), p.2324-2338 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wafer bin maps (WBM) in circuit probe (CP) tests that present specific defect patterns provide crucial information to identifying assignable causes in the semiconductor manufacturing process. However, most semiconductor companies rely on engineers using eyeball analysis to judge defect patterns, which is time-consuming and not reliable. Furthermore, the conventional statistical process control used in CP tests only monitors the mean or standard deviation of yield rates and failure percentages without detecting defect patterns. To fill the gap, this study aims to develop a manufacturing intelligence solution that integrates spatial statistics and neural networks for the detection and classification of WBM patterns to construct a system for online monitoring and visualisation of WBM failure percentages and corresponding spatial patterns with an extended statistical process control chart. An empirical study was conducted in a leading semiconductor company in Taiwan to validate the effectiveness of the proposed system. The results show its practical viability and thus the proposed solution has been implemented in this company. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2012.737943 |