Loading…

Recombination via point defects and their complexes in solar silicon

Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2012-10, Vol.209 (10), p.1884-1893
Main Authors: Peaker, A. R., Markevich, V. P., Hamilton, B., Parada, G., Dudas, A., Pap, A., Don, E., Lim, B., Schmidt, J., Yu, L., Yoon, Y., Rozgonyi, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3
cites cdi_FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3
container_end_page 1893
container_issue 10
container_start_page 1884
container_title Physica status solidi. A, Applications and materials science
container_volume 209
creator Peaker, A. R.
Markevich, V. P.
Hamilton, B.
Parada, G.
Dudas, A.
Pap, A.
Don, E.
Lim, B.
Schmidt, J.
Yu, L.
Yoon, Y.
Rozgonyi, G.
description Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically
doi_str_mv 10.1002/pssa.201200216
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1322169399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932816011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3</originalsourceid><addsrcrecordid>eNqFkEtPAjEUhSdGExHdum7ievD2MS2zJChoxBdoXDadaYnFYTq2g8K_twRD3Lm6j5zvPk6SnGPoYQBy2YSgegQwiQXmB0kH9zlJOcX54T4HOE5OQlgAsIwJ3EmupqZ0y8LWqrWuRl9WocbZukXazE3ZBqRqjdp3Yz2KuqYyaxOQrVFwlfIo2MqWrj5NjuaqCubsN3aT19H1y_AmnTyOb4eDSVrSPOMp1zhjOgOtQWOKaa5jP2dUC8LLvuGZIEwAVwLrApjinChghWZMC4BCFLSbXOzmNt59rkxo5cKtfB1XSkxJfDqP86Kqt1OV3oXgzVw23i6V30gMcuuU3Dol905FIN8B37Yym3_U8mk2G_xl0x1rQ2vWe1b5D8kFFZl8exjLeNbzdHR3L4H-AJydeu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322169399</pqid></control><display><type>article</type><title>Recombination via point defects and their complexes in solar silicon</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Peaker, A. R. ; Markevich, V. P. ; Hamilton, B. ; Parada, G. ; Dudas, A. ; Pap, A. ; Don, E. ; Lim, B. ; Schmidt, J. ; Yu, L. ; Yoon, Y. ; Rozgonyi, G.</creator><creatorcontrib>Peaker, A. R. ; Markevich, V. P. ; Hamilton, B. ; Parada, G. ; Dudas, A. ; Pap, A. ; Don, E. ; Lim, B. ; Schmidt, J. ; Yu, L. ; Yoon, Y. ; Rozgonyi, G.</creatorcontrib><description>Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically &lt;1010 cm−3). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi‐crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi‐crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi‐crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. Achieving high efficiency in low cost silicon solar cells is a key goal in the quest for effective renewable energy sources. In this Feature Article the authors have studied the recombination process in solar silicon involving defects and impurities which degrade the cell efficiency. Lifetime mapping measurement using microwave detected photoconductivity decay shows that the parasitic recombination is concentrated in specific regions of multi‐crystalline ingots. Localised Laplace Deep Level Transient Spectroscopy has been used to distinguish isolated point defects, small precipitate complexes and decorated extended defects. It is concluded that in most multi‐crystalline materials the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201200216</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Laplace deep level transient spectroscopy ; minority carrier lifetime ; passivation ; Photovoltaic cells ; Point defects ; recombination ; silicon solar cells ; Solar energy ; transition metals</subject><ispartof>Physica status solidi. A, Applications and materials science, 2012-10, Vol.209 (10), p.1884-1893</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3</citedby><cites>FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peaker, A. R.</creatorcontrib><creatorcontrib>Markevich, V. P.</creatorcontrib><creatorcontrib>Hamilton, B.</creatorcontrib><creatorcontrib>Parada, G.</creatorcontrib><creatorcontrib>Dudas, A.</creatorcontrib><creatorcontrib>Pap, A.</creatorcontrib><creatorcontrib>Don, E.</creatorcontrib><creatorcontrib>Lim, B.</creatorcontrib><creatorcontrib>Schmidt, J.</creatorcontrib><creatorcontrib>Yu, L.</creatorcontrib><creatorcontrib>Yoon, Y.</creatorcontrib><creatorcontrib>Rozgonyi, G.</creatorcontrib><title>Recombination via point defects and their complexes in solar silicon</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically &lt;1010 cm−3). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi‐crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi‐crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi‐crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. Achieving high efficiency in low cost silicon solar cells is a key goal in the quest for effective renewable energy sources. In this Feature Article the authors have studied the recombination process in solar silicon involving defects and impurities which degrade the cell efficiency. Lifetime mapping measurement using microwave detected photoconductivity decay shows that the parasitic recombination is concentrated in specific regions of multi‐crystalline ingots. Localised Laplace Deep Level Transient Spectroscopy has been used to distinguish isolated point defects, small precipitate complexes and decorated extended defects. It is concluded that in most multi‐crystalline materials the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries.</description><subject>Laplace deep level transient spectroscopy</subject><subject>minority carrier lifetime</subject><subject>passivation</subject><subject>Photovoltaic cells</subject><subject>Point defects</subject><subject>recombination</subject><subject>silicon solar cells</subject><subject>Solar energy</subject><subject>transition metals</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEUhSdGExHdum7ievD2MS2zJChoxBdoXDadaYnFYTq2g8K_twRD3Lm6j5zvPk6SnGPoYQBy2YSgegQwiQXmB0kH9zlJOcX54T4HOE5OQlgAsIwJ3EmupqZ0y8LWqrWuRl9WocbZukXazE3ZBqRqjdp3Yz2KuqYyaxOQrVFwlfIo2MqWrj5NjuaqCubsN3aT19H1y_AmnTyOb4eDSVrSPOMp1zhjOgOtQWOKaa5jP2dUC8LLvuGZIEwAVwLrApjinChghWZMC4BCFLSbXOzmNt59rkxo5cKtfB1XSkxJfDqP86Kqt1OV3oXgzVw23i6V30gMcuuU3Dol905FIN8B37Yym3_U8mk2G_xl0x1rQ2vWe1b5D8kFFZl8exjLeNbzdHR3L4H-AJydeu4</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Peaker, A. R.</creator><creator>Markevich, V. P.</creator><creator>Hamilton, B.</creator><creator>Parada, G.</creator><creator>Dudas, A.</creator><creator>Pap, A.</creator><creator>Don, E.</creator><creator>Lim, B.</creator><creator>Schmidt, J.</creator><creator>Yu, L.</creator><creator>Yoon, Y.</creator><creator>Rozgonyi, G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201210</creationdate><title>Recombination via point defects and their complexes in solar silicon</title><author>Peaker, A. R. ; Markevich, V. P. ; Hamilton, B. ; Parada, G. ; Dudas, A. ; Pap, A. ; Don, E. ; Lim, B. ; Schmidt, J. ; Yu, L. ; Yoon, Y. ; Rozgonyi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Laplace deep level transient spectroscopy</topic><topic>minority carrier lifetime</topic><topic>passivation</topic><topic>Photovoltaic cells</topic><topic>Point defects</topic><topic>recombination</topic><topic>silicon solar cells</topic><topic>Solar energy</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peaker, A. R.</creatorcontrib><creatorcontrib>Markevich, V. P.</creatorcontrib><creatorcontrib>Hamilton, B.</creatorcontrib><creatorcontrib>Parada, G.</creatorcontrib><creatorcontrib>Dudas, A.</creatorcontrib><creatorcontrib>Pap, A.</creatorcontrib><creatorcontrib>Don, E.</creatorcontrib><creatorcontrib>Lim, B.</creatorcontrib><creatorcontrib>Schmidt, J.</creatorcontrib><creatorcontrib>Yu, L.</creatorcontrib><creatorcontrib>Yoon, Y.</creatorcontrib><creatorcontrib>Rozgonyi, G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peaker, A. R.</au><au>Markevich, V. P.</au><au>Hamilton, B.</au><au>Parada, G.</au><au>Dudas, A.</au><au>Pap, A.</au><au>Don, E.</au><au>Lim, B.</au><au>Schmidt, J.</au><au>Yu, L.</au><au>Yoon, Y.</au><au>Rozgonyi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombination via point defects and their complexes in solar silicon</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2012-10</date><risdate>2012</risdate><volume>209</volume><issue>10</issue><spage>1884</spage><epage>1893</epage><pages>1884-1893</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically &lt;1010 cm−3). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi‐crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi‐crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi‐crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. Achieving high efficiency in low cost silicon solar cells is a key goal in the quest for effective renewable energy sources. In this Feature Article the authors have studied the recombination process in solar silicon involving defects and impurities which degrade the cell efficiency. Lifetime mapping measurement using microwave detected photoconductivity decay shows that the parasitic recombination is concentrated in specific regions of multi‐crystalline ingots. Localised Laplace Deep Level Transient Spectroscopy has been used to distinguish isolated point defects, small precipitate complexes and decorated extended defects. It is concluded that in most multi‐crystalline materials the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.201200216</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2012-10, Vol.209 (10), p.1884-1893
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_1322169399
source Wiley-Blackwell Read & Publish Collection
subjects Laplace deep level transient spectroscopy
minority carrier lifetime
passivation
Photovoltaic cells
Point defects
recombination
silicon solar cells
Solar energy
transition metals
title Recombination via point defects and their complexes in solar silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombination%20via%20point%20defects%20and%20their%20complexes%20in%20solar%20silicon&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Peaker,%20A.%20R.&rft.date=2012-10&rft.volume=209&rft.issue=10&rft.spage=1884&rft.epage=1893&rft.pages=1884-1893&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201200216&rft_dat=%3Cproquest_cross%3E2932816011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3956-6d154d50dd0d13139dc39943d726c8e65724706a71db04a662a04bd44d700b7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1322169399&rft_id=info:pmid/&rfr_iscdi=true