Loading…

Convolution operators on spaces of real analytic functions

Let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I\subset \mathbb {R}$\end{document} be an open interval and let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mu \in A(\mathbb {R})^{\prime }$\end{document} and \documentclass{article}\us...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2013-06, Vol.286 (8-9), p.908-920
Main Author: Langenbruch, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I\subset \mathbb {R}$\end{document} be an open interval and let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mu \in A(\mathbb {R})^{\prime }$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$G:=\mbox{conv}(\mbox{supp}(\mu ))$\end{document}. We characterize the surjectivity of the convolution operator Tμ: A(I − G) → A(I) by means of a new estimate from below for the Fourier transform \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\widehat{\mu }$\end{document} valid on conical subsets of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {C}\setminus \mathbb {R}$\end{document}. We also characterize when Tμ admits a continuous linear right inverse.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201100155