Loading…
Convolution operators on spaces of real analytic functions
Let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I\subset \mathbb {R}$\end{document} be an open interval and let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mu \in A(\mathbb {R})^{\prime }$\end{document} and \documentclass{article}\us...
Saved in:
Published in: | Mathematische Nachrichten 2013-06, Vol.286 (8-9), p.908-920 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I\subset \mathbb {R}$\end{document} be an open interval and let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mu \in A(\mathbb {R})^{\prime }$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$G:=\mbox{conv}(\mbox{supp}(\mu ))$\end{document}. We characterize the surjectivity of the convolution operator Tμ: A(I − G) → A(I) by means of a new estimate from below for the Fourier transform \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\widehat{\mu }$\end{document} valid on conical subsets of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {C}\setminus \mathbb {R}$\end{document}. We also characterize when Tμ admits a continuous linear right inverse. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201100155 |