Loading…
Two-Dimensional Thermal Resistance Analysis of a Waste Heat Recovery System with Thermoelectric Generators
In this study, it is shown that two-dimensional (2D) thermal resistance analysis is a rapid and simple method to predict the power generated from a waste heat recovery system with thermoelectric generators (TEGs). Performance prediction is an important part of system design, generally being simulate...
Saved in:
Published in: | Journal of electronic materials 2013-07, Vol.42 (7), p.1982-1987 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, it is shown that two-dimensional (2D) thermal resistance analysis is a rapid and simple method to predict the power generated from a waste heat recovery system with thermoelectric generators (TEGs). Performance prediction is an important part of system design, generally being simulated by numerical methods with high accuracy but long computational duration. Use of the presented analysis saves much time relative to such numerical methods. The simple 2D model of the waste heat recovery system comprises three parts: a recovery chamber, the TEGs, and a cooling system. A fin-structured duct serves as a heat recovery chamber, to which were attached the hot sides of two TEGs; the cold sides were attached to a cooling system. The TEG module and duct had the same width. In the 2D analysis, unknown temperatures are located at the centroid of each cell into which the system is divided. The relations among the unknown temperatures of the cells are based on the principle of energy conservation and the definition of thermal resistance. The temperatures of the waste hot gas at the inlet and of the ambient fluid are known. With these boundary conditions, the unknown temperatures in the system become solvable, and the power generated by the TEGs can be predicted. Meanwhile, a three-dimensional (3D) model of the system was simulated in FloTHERMÂ 9.2. The 3D numerical solution matched the solution of the 2D analysis within 10%. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-013-2488-0 |