Loading…
Matrix representation of cryptographic functions
The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are...
Saved in:
Published in: | Journal of applied mathematics and bioinformatics 2013-01, Vol.3 (1), p.205 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A first study on matrix expressions for the Double and Multiple Discrete Logarithms is also presented. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1792-6939 1792-6939 |