Loading…

Matrix representation of cryptographic functions

The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics and bioinformatics 2013-01, Vol.3 (1), p.205
Main Authors: Meletiou, G C, Laskari, E C, Tasoulis, D K, Vrahatis, M N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 205
container_title Journal of applied mathematics and bioinformatics
container_volume 3
creator Meletiou, G C
Laskari, E C
Tasoulis, D K
Vrahatis, M N
description The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A first study on matrix expressions for the Double and Multiple Discrete Logarithms is also presented. [PUBLICATION ABSTRACT]
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1425248081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047120361</sourcerecordid><originalsourceid>FETCH-proquest_journals_14252480813</originalsourceid><addsrcrecordid>eNpjYuA0NLc00jWzNLZkQWJzMPAWF2cZAIG5hZGZmQEng4FvYklRZoVCUWpBUWpxal5JYklmfp5CfppCclFlQUl-elFiQUZmskJaaV4ySKaYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXiDU2MTI1MLAwsDI2JUwUAOY42DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425248081</pqid></control><display><type>article</type><title>Matrix representation of cryptographic functions</title><source>ABI/INFORM Global</source><creator>Meletiou, G C ; Laskari, E C ; Tasoulis, D K ; Vrahatis, M N</creator><creatorcontrib>Meletiou, G C ; Laskari, E C ; Tasoulis, D K ; Vrahatis, M N</creatorcontrib><description>The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A first study on matrix expressions for the Double and Multiple Discrete Logarithms is also presented. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1792-6939</identifier><identifier>EISSN: 1792-6939</identifier><language>eng</language><publisher>Athens: International Scientific Press</publisher><subject>Cryptography ; Data encryption ; Matrix ; Studies</subject><ispartof>Journal of applied mathematics and bioinformatics, 2013-01, Vol.3 (1), p.205</ispartof><rights>Copyright International Scientific Press 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1425248081/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1425248081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Meletiou, G C</creatorcontrib><creatorcontrib>Laskari, E C</creatorcontrib><creatorcontrib>Tasoulis, D K</creatorcontrib><creatorcontrib>Vrahatis, M N</creatorcontrib><title>Matrix representation of cryptographic functions</title><title>Journal of applied mathematics and bioinformatics</title><description>The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A first study on matrix expressions for the Double and Multiple Discrete Logarithms is also presented. [PUBLICATION ABSTRACT]</description><subject>Cryptography</subject><subject>Data encryption</subject><subject>Matrix</subject><subject>Studies</subject><issn>1792-6939</issn><issn>1792-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpjYuA0NLc00jWzNLZkQWJzMPAWF2cZAIG5hZGZmQEng4FvYklRZoVCUWpBUWpxal5JYklmfp5CfppCclFlQUl-elFiQUZmskJaaV4ySKaYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXiDU2MTI1MLAwsDI2JUwUAOY42DA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Meletiou, G C</creator><creator>Laskari, E C</creator><creator>Tasoulis, D K</creator><creator>Vrahatis, M N</creator><general>International Scientific Press</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M1F</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130101</creationdate><title>Matrix representation of cryptographic functions</title><author>Meletiou, G C ; Laskari, E C ; Tasoulis, D K ; Vrahatis, M N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_14252480813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cryptography</topic><topic>Data encryption</topic><topic>Matrix</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Meletiou, G C</creatorcontrib><creatorcontrib>Laskari, E C</creatorcontrib><creatorcontrib>Tasoulis, D K</creatorcontrib><creatorcontrib>Vrahatis, M N</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (ProQuest)</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meletiou, G C</au><au>Laskari, E C</au><au>Tasoulis, D K</au><au>Vrahatis, M N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix representation of cryptographic functions</atitle><jtitle>Journal of applied mathematics and bioinformatics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>3</volume><issue>1</issue><spage>205</spage><pages>205-</pages><issn>1792-6939</issn><eissn>1792-6939</eissn><abstract>The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A first study on matrix expressions for the Double and Multiple Discrete Logarithms is also presented. [PUBLICATION ABSTRACT]</abstract><cop>Athens</cop><pub>International Scientific Press</pub></addata></record>
fulltext fulltext
identifier ISSN: 1792-6939
ispartof Journal of applied mathematics and bioinformatics, 2013-01, Vol.3 (1), p.205
issn 1792-6939
1792-6939
language eng
recordid cdi_proquest_journals_1425248081
source ABI/INFORM Global
subjects Cryptography
Data encryption
Matrix
Studies
title Matrix representation of cryptographic functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20representation%20of%20cryptographic%20functions&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20bioinformatics&rft.au=Meletiou,%20G%20C&rft.date=2013-01-01&rft.volume=3&rft.issue=1&rft.spage=205&rft.pages=205-&rft.issn=1792-6939&rft.eissn=1792-6939&rft_id=info:doi/&rft_dat=%3Cproquest%3E3047120361%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_14252480813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1425248081&rft_id=info:pmid/&rfr_iscdi=true