Loading…
Direction estimation in single-index models via distance covariance
We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discret...
Saved in:
Published in: | Journal of multivariate analysis 2013-11, Vol.122, p.148-161 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2013.07.003 |