Loading…

Direction estimation in single-index models via distance covariance

We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discret...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2013-11, Vol.122, p.148-161
Main Authors: Sheng, Wenhui, Yin, Xiangrong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893
cites cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893
container_end_page 161
container_issue
container_start_page 148
container_title Journal of multivariate analysis
container_volume 122
creator Sheng, Wenhui
Yin, Xiangrong
description We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.
doi_str_mv 10.1016/j.jmva.2013.07.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1435631161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X13001358</els_id><sourcerecordid>3080213751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicU7w2o4dS1xQ-ZUqcQGJm-XaG-SoTYqdRvD2uJQzp53DzO7OR8gl0AooyOuu6jaTrRgFXlFVUcqPyAyorkvFBD8mM0qFKlmt30_JWUodpQC1EjOyuAsR3RiGvsA0ho39laEvUug_1liG3uNXsRk8rlMxBVv4kEbbOyzcMNkY9vKcnLR2nfDib87J28P96-KpXL48Pi9ul6Xjio2l0mLlqLOAiinhW9FCg0xQLZFrcB6lcILpVlqpalgpCohNw1vtZb2CRvM5uTrs3cbhc5ffNd2wi30-aUDwWnIACdnFDi4Xh5QitmYbc6_4bYCaPSzTmT0ss4dlqDIZVg7dHEK5Jk4Bo0kuYO7mf_EYP4T_4j84J3Jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435631161</pqid></control><display><type>article</type><title>Direction estimation in single-index models via distance covariance</title><source>Elsevier</source><creator>Sheng, Wenhui ; Yin, Xiangrong</creator><creatorcontrib>Sheng, Wenhui ; Yin, Xiangrong</creatorcontrib><description>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2013.07.003</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic methods ; Brownian distance covariance ; Central subspace ; Comparative studies ; Distance covariance ; Estimating techniques ; Mathematical models ; Single-index model ; Sufficient dimension reduction</subject><ispartof>Journal of multivariate analysis, 2013-11, Vol.122, p.148-161</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</citedby><cites>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sheng, Wenhui</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><title>Direction estimation in single-index models via distance covariance</title><title>Journal of multivariate analysis</title><description>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</description><subject>Asymptotic methods</subject><subject>Brownian distance covariance</subject><subject>Central subspace</subject><subject>Comparative studies</subject><subject>Distance covariance</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Single-index model</subject><subject>Sufficient dimension reduction</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicU7w2o4dS1xQ-ZUqcQGJm-XaG-SoTYqdRvD2uJQzp53DzO7OR8gl0AooyOuu6jaTrRgFXlFVUcqPyAyorkvFBD8mM0qFKlmt30_JWUodpQC1EjOyuAsR3RiGvsA0ho39laEvUug_1liG3uNXsRk8rlMxBVv4kEbbOyzcMNkY9vKcnLR2nfDib87J28P96-KpXL48Pi9ul6Xjio2l0mLlqLOAiinhW9FCg0xQLZFrcB6lcILpVlqpalgpCohNw1vtZb2CRvM5uTrs3cbhc5ffNd2wi30-aUDwWnIACdnFDi4Xh5QitmYbc6_4bYCaPSzTmT0ss4dlqDIZVg7dHEK5Jk4Bo0kuYO7mf_EYP4T_4j84J3Jx</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Sheng, Wenhui</creator><creator>Yin, Xiangrong</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201311</creationdate><title>Direction estimation in single-index models via distance covariance</title><author>Sheng, Wenhui ; Yin, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Brownian distance covariance</topic><topic>Central subspace</topic><topic>Comparative studies</topic><topic>Distance covariance</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Single-index model</topic><topic>Sufficient dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Wenhui</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Wenhui</au><au>Yin, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction estimation in single-index models via distance covariance</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2013-11</date><risdate>2013</risdate><volume>122</volume><spage>148</spage><epage>161</epage><pages>148-161</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2013.07.003</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2013-11, Vol.122, p.148-161
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1435631161
source Elsevier
subjects Asymptotic methods
Brownian distance covariance
Central subspace
Comparative studies
Distance covariance
Estimating techniques
Mathematical models
Single-index model
Sufficient dimension reduction
title Direction estimation in single-index models via distance covariance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction%20estimation%20in%20single-index%20models%20via%20distance%20covariance&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Sheng,%20Wenhui&rft.date=2013-11&rft.volume=122&rft.spage=148&rft.epage=161&rft.pages=148-161&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2013.07.003&rft_dat=%3Cproquest_cross%3E3080213751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435631161&rft_id=info:pmid/&rfr_iscdi=true