Loading…
Direction estimation in single-index models via distance covariance
We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discret...
Saved in:
Published in: | Journal of multivariate analysis 2013-11, Vol.122, p.148-161 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893 |
container_end_page | 161 |
container_issue | |
container_start_page | 148 |
container_title | Journal of multivariate analysis |
container_volume | 122 |
creator | Sheng, Wenhui Yin, Xiangrong |
description | We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method. |
doi_str_mv | 10.1016/j.jmva.2013.07.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1435631161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X13001358</els_id><sourcerecordid>3080213751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicU7w2o4dS1xQ-ZUqcQGJm-XaG-SoTYqdRvD2uJQzp53DzO7OR8gl0AooyOuu6jaTrRgFXlFVUcqPyAyorkvFBD8mM0qFKlmt30_JWUodpQC1EjOyuAsR3RiGvsA0ho39laEvUug_1liG3uNXsRk8rlMxBVv4kEbbOyzcMNkY9vKcnLR2nfDib87J28P96-KpXL48Pi9ul6Xjio2l0mLlqLOAiinhW9FCg0xQLZFrcB6lcILpVlqpalgpCohNw1vtZb2CRvM5uTrs3cbhc5ffNd2wi30-aUDwWnIACdnFDi4Xh5QitmYbc6_4bYCaPSzTmT0ss4dlqDIZVg7dHEK5Jk4Bo0kuYO7mf_EYP4T_4j84J3Jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435631161</pqid></control><display><type>article</type><title>Direction estimation in single-index models via distance covariance</title><source>Elsevier</source><creator>Sheng, Wenhui ; Yin, Xiangrong</creator><creatorcontrib>Sheng, Wenhui ; Yin, Xiangrong</creatorcontrib><description>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2013.07.003</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic methods ; Brownian distance covariance ; Central subspace ; Comparative studies ; Distance covariance ; Estimating techniques ; Mathematical models ; Single-index model ; Sufficient dimension reduction</subject><ispartof>Journal of multivariate analysis, 2013-11, Vol.122, p.148-161</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright Taylor & Francis Group Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</citedby><cites>FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sheng, Wenhui</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><title>Direction estimation in single-index models via distance covariance</title><title>Journal of multivariate analysis</title><description>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</description><subject>Asymptotic methods</subject><subject>Brownian distance covariance</subject><subject>Central subspace</subject><subject>Comparative studies</subject><subject>Distance covariance</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Single-index model</subject><subject>Sufficient dimension reduction</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicU7w2o4dS1xQ-ZUqcQGJm-XaG-SoTYqdRvD2uJQzp53DzO7OR8gl0AooyOuu6jaTrRgFXlFVUcqPyAyorkvFBD8mM0qFKlmt30_JWUodpQC1EjOyuAsR3RiGvsA0ho39laEvUug_1liG3uNXsRk8rlMxBVv4kEbbOyzcMNkY9vKcnLR2nfDib87J28P96-KpXL48Pi9ul6Xjio2l0mLlqLOAiinhW9FCg0xQLZFrcB6lcILpVlqpalgpCohNw1vtZb2CRvM5uTrs3cbhc5ffNd2wi30-aUDwWnIACdnFDi4Xh5QitmYbc6_4bYCaPSzTmT0ss4dlqDIZVg7dHEK5Jk4Bo0kuYO7mf_EYP4T_4j84J3Jx</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Sheng, Wenhui</creator><creator>Yin, Xiangrong</creator><general>Elsevier Inc</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201311</creationdate><title>Direction estimation in single-index models via distance covariance</title><author>Sheng, Wenhui ; Yin, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Brownian distance covariance</topic><topic>Central subspace</topic><topic>Comparative studies</topic><topic>Distance covariance</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Single-index model</topic><topic>Sufficient dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Wenhui</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Wenhui</au><au>Yin, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direction estimation in single-index models via distance covariance</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2013-11</date><risdate>2013</risdate><volume>122</volume><spage>148</spage><epage>161</epage><pages>148-161</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>We introduce a new method for estimating the direction in single-index models via distance covariance. Our method keeps model-free advantage as a dimension reduction approach. In addition, no smoothing technique is needed, which enables our method to work efficiently when many predictors are discrete or categorical. Under regularity conditions, we show that our estimator is root-n consistent and asymptotically normal. We compare the performance of our method with some dimension reduction methods and the single-index estimation method by simulations and show that our method is very competitive and robust across a number of models. Finally, we analyze the UCI Adult Data Set to demonstrate the efficacy of our method.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2013.07.003</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2013-11, Vol.122, p.148-161 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_1435631161 |
source | Elsevier |
subjects | Asymptotic methods Brownian distance covariance Central subspace Comparative studies Distance covariance Estimating techniques Mathematical models Single-index model Sufficient dimension reduction |
title | Direction estimation in single-index models via distance covariance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direction%20estimation%20in%20single-index%20models%20via%20distance%20covariance&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Sheng,%20Wenhui&rft.date=2013-11&rft.volume=122&rft.spage=148&rft.epage=161&rft.pages=148-161&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2013.07.003&rft_dat=%3Cproquest_cross%3E3080213751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-794bc0ca1e7274df4f18e24096e391cde64c429f6a6751b701ee883f9d65b1893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435631161&rft_id=info:pmid/&rfr_iscdi=true |